
A Complete Algorithm for Generating Safe
Trajectories for Multi-Robot Teams

Sarah Tang and Vijay Kumar

Abstract In this paper, we consider the problem of planning collision-free trajec-

tories to navigate a team of labeled robots from a set of start locations to a set of

goal locations, where robots have pre-assigned and non-interchangeable goals. We

present a solution to this problem for a centralized team operating in an obstacle-

free, two-dimensional workspace. Our algorithm allows robots to follow Optimal

Motion Plans (OMPs) to their goals when possible and has them enter Circular

HOlding Patterns (CHOPs) to safely navigate congested areas. This OMP+CHOP

algorithm is shown to be safe and complete, and simulation results show scalability

to hundreds of robots.

1 Introduction

Multi-robot systems have become attractive solutions for a wide variety of tasks.

One prominent initiative is the Amazon Prime Air project [5], which proposes us-

ing autonomous Unmanned Aircraft Systems (UASs) to deliver packages under five

pounds to customers within a ten mile radius of a fulfillment center in less than 30

minutes. In this setting, hundreds to thousands of robots could be in the air simulta-

neously. Each robot is assigned a fixed and non-interchangeable goal, or labeled.

While it may seem promising to simply stagger the UASs’ altitudes, recent Fed-

eral Aviation Administration (FAA) proposed guidelines [4] limit the maximum alti-

tude of these small UASs to 400 feet, essentially confining vehicles to the horizontal

plane. Thus, this work focuses on finding safe motion plans for robots operating in a

two-dimensional space. This problem is harder than the three-dimensional version,

because the latter provides an additional degree of freedom.

There are, broadly speaking, three guarantees of interest for planning algorithms:

safety — robots will be collision-free with obstacles and each other, optimality —

S. Tang and V. Kumar

University of Pennsylvania, e-mail: sytang,kumar@seas.upenn.edu

1

The final publication is available at Springer via https://doi.org/10.1007/978-3-319-60916-4_34.

2 Sarah Tang and Vijay Kumar

the solution is minimum cost, and completeness — the planner will always find a

solution if one exists and indicate that there is none if one does not.

Approaches to the labeled multi-robot planning problem can be characterized as

coupled or decoupled. Coupled planners search for optimal paths in the joint config-

uration space of all team members, either by directly applying planning algorithms

such as A* [7] or with specialized variants [6]. These approaches typically guaran-

tee optimality and completeness. However, as the search space grows exponentially

with the number of robots, they quickly become computationally impractical.

Decoupled planners, on the other hand, plan for each robot separately. One ap-

proach is to plan each robot’s motion in priority order. Lower priority robots must

avoid higher priority ones [1] [3]. An alternative is to first find paths that avoid static

obstacles, then design velocity profiles that avoid inter-robot collisions [9] [11].

These planners tend to be faster, but are typically not complete.

As a result, algorithms that combine both approaches have been proposed. van

den Berg et al. [17] decouple the problem into smaller coupled subproblems, mini-

mizing the dimensionality of the highest-dimensional subproblem. Subdimensional

expansion [18] first plans in each robot’s individual configuration space and searches

a joint state space in regions where collisions occur. These approaches offer signifi-

cant computational improvements, but can still perform poorly in the worst case.

Other planning approaches include rule-based [2] or network flow [19] algo-

rithms. Alternatively, van den Berg et al. [16] frame the problem as a reciprocal col-

lision avoidance problem. In air traffic control, Tomlin et al. [13] find safe conflict

resolution maneuvers in the presence of uncertainties. However, this approach re-

quires computation of solutions to the Hamilton-Jacobi-Isaacs PDE equation, which

becomes computationally difficult for large teams.

Other settings allow for robots to be completely interchangeable. Proposed so-

lutions to the unlabeled multi-robot planning problem must solve both the task as-

signment and trajectory generation problems [14]. In particular, Turpin et. al pro-

pose an O(N3) solution to the unlabeled planning problem in obstacle-free environ-

ments [14] for teams of N robots.

Our work proposes a centralized algorithm for finding collision-free trajecto-

ries for a team of labeled robots operating in an obstacle-free two-dimensional

workspace. In essence, each robot pursues its own optimal motion plan until an

impending collision is detected. This causes the affected robots to enter a hold-

ing pattern, similar to the racetrack patterns used in civilian aviation in congested

airspace. Our approach is similar to subdimensional expansion, however, collisions

are resolved through analytically constructed maneuvers as opposed to a high-

dimensional graph search. While this is suboptimal, our algorithm offers complete-

ness guarantees and allows for greater scalability to large teams.

The remainder of this paper will proceed as follows. Section 2 presents terminol-

ogy and Section 3 discusses a known solution to the unlabeled multi-robot planning

problem. Section 4 details our algorithm for the labeled problem and discusses its

safety and completeness guarantees. Section 5 characterizes the algorithm’s per-

formance through simulation experiments and Section 6 presents conclusions and

directions for future work.

A Complete Algorithm for Generating Safe Trajectories for Multi-Robot Teams 3

2 Problem Definition

Let IZ = {1,2, ...,Z} denote the set of integers between 1 and Z, inclusive. Let N
denote the number of robots in the team. We represent the start and goal positions

of robot i 2IN with si 2 R2

and gi 2 R2

, respectively, and the sets of all start and

goal positions with S and G, respectively. x denotes a position in R2

and xi denotes

the state of robot i. Each robot has identical first-order dynamics:

˙xi(t) = ui(t), kui(t)k2

 vmax (1)

In the centralized paradigm, each robot knows the states and goals of all robots.

We define a trajectory as a piecewise smooth function of time, g(t) : [t
0

, t f]!R2

.

Let g(x0

,x
1

)(t) denote an optimal trajectory between x
0

and x
1

and gi(t) denote robot

i’s trajectory between si and gi. Let g(t) denote the set of all trajectories gi(t).
We model each robot as a disk of radius R. We use B(xi(t)) to denote the area

robot i occupies at xi(t) and B(gi) to denote the area it sweeps out traversing gi(t).
The goal of the labeled planning problem is to plan a trajectory gi(t) for each

robot such that gi(0) = si, gi(t f ,i) = gi. All robots’ trajectories start simultaneously

but each robot can reach its goal at a unique t f ,i. We assume robots remain stationary

at their goals for all t > t f ,i, and we require B(xi(t))\B(x j(t)) = /0 for all t 2
[0,maxi2IN t f ,i], j 6= i 2IN .

3 Concurrent Assignment and Planning of Trajectories (CAPT)

First, consider the unlabeled planning problem: given N robots and M goals, plan

a trajectory gi(t) for each robot such that each goal is visited by one robot. When

M > N, some goals will remain unvisited while when M < N, some robots will not

visit any goals. In this section, we outline the Concurrent Assignment and Planning

of Trajectories (CAPT) algorithm [14] to solve this problem.

Suppose the start and goal locations are at least 2

p
2R away from each other:

ksi� s jk2

> 2

p
2R 8i 6= j 2IN , kgi�g jk2

> 2

p
2R 8i 6= j 2IM (2)

Define the assignment mapping robots to goals as f : IN !IM [0, where fi = j
indicates that robot i is assigned to goal j and fi = 0 if robot i is unassigned. The

CAPT algorithm finds the assignment and trajectories that solve:

min

f ,g(t)

N

Â
i=1

Z t f

0

˙xi(t)T
˙xi(t)dt (3)

The solution to this problem consists of straight-line trajectories that minimize the

sum of the squares of the distances traveled. In other words, the optimal assignment

is given by:

4 Sarah Tang and Vijay Kumar

f ? = argmin

f

N

Â
i=1

ksi�gfik
2

2

(4)

This assignment can be found in O(N3) time using the Hungarian Algorithm [10].

Denote the assigned goal of robot i with g?i , where g?i = si if robot i is unassigned

and g?i = gf?
i

otherwise. The optimal trajectories are the constant velocity straight-

line trajectories from gi(0) = si to gi(t f) = g?i . We want all robots to arrive at their

goals simultaneously at t f , which can be found with:

t f = max

i2IN

ksi�g?i k2

vmax
(5)

We will refer to such trajectories as synchronized. Turpin et al. show these trajecto-

ries are collision-free [14].

4 Optimal Motion Plans + Circular HOlding Patterns
(OMP+CHOP) for the Labeled Planning Problem

We now present our algorithm to solve the labeled planning problem. First, we dis-

cuss the best-case scenario, where all robots can move directly to their goals fol-

lowing an Optimal Motion Plan (OMP). Next, we consider the worst-case scenario,

where all robots must enter a single Circular HOlding Pattern (CHOP). Finally, we

describe the full algorithm, which combines these two strategies.

We again assume the start and goal positions satisfy the separation assumptions

given in Eq. 2, however, in the labeled setting, M = N.

4.1 Optimal Motion Plans (OMPs)
Given any two waypoints and times of arrival at these points, we can design an

optimal trajectory taking robot i from xi(t0) = x
0

to xi(t f) = x f by solving:

g(x0

,x f)(t) = argmin

g(t)

Z t f

t
0

˙xi(t)T
˙xi(t)dt

subject to: g(t
0

) = x
0

, g(t f) = x f (6)

As before, the optimal trajectory is the constant-velocity straight-line path:

g(x0

,x f)(t) =
�
x f �x

0

� t� t
0

t f � t
0

+x
0

(7)

The Optimal Motion Plan (OMP) for a robot is the optimal trajectory from its cur-

rent position to its goal. In the best case, all robots’ OMPs from their start positions

are collision-free. Then, for each robot, gi(t) = g(si,gi)(t), t
0

= 0, and t f ,i =
ksi�gik

2

vmax
.

Trajectories are unsynchronized: all robots travel at vmax to arrive at different times.

A Complete Algorithm for Generating Safe Trajectories for Multi-Robot Teams 5

4.2 Circular HOlding Patterns (CHOPs)
When their OMPs are not collision-free, robots enter a Circular HOlding Pattern

(CHOP) to safely maneuver to their goals. Algorithm 1 presents the CHOP con-

struction algorithm and Sections 4.2.1-4.2.4 detail its key steps. Its inputs are the

CHOP start time, ts, the index set of robots involved, Rm, a set of CHOP start posi-
tions, Xs, from which robots enter the CHOP, and the set of goals Xg = {gi | i2Rm}.

The equality sign denotes the assignment of a value, a left arrow indicates the addi-

tion of discrete elements to an existing set, and Xa,i denotes element i of set Xa.

For now, assume all robots immediately enter a single CHOP. This represents the

worst-case scenario, where robots are densely packed and smaller CHOPs cannot

be created. In this case, the algorithm inputs are ts = 0, Rm = IN , Xs = S, Xg = G.

Algorithm 1 (m,xc,rc) = Create CHOP(ts,Rm,Xs,Xg,R,vmax)

1: Nm = number of robots in Rm

2: xc =
Âi2INm

Xs,i

Nm
// Define center of the CHOP

3: nw = 2Nm // Designate number of intermediate waypoints in the CHOP

4: rc = Find CHOP Radius(nw,xc,Xg,R) //Find minimum safe radius for the CHOP

5: // Find the set of intermediate waypoints

6: Xm = {xc + rc[cos(qi) sin(qi)]T | qi = (i�1) 2p
nw
, i 2Inw}

7: // Assign entry waypoint for each robot

8: Xw = {Xm,1,Xm,3, ...,Xm,nw�1

}
9: f s = CAPT(Xs,Xw)

10: // Define Exit Condition for each robot

11: for all i 2INm do
12: f g

i = argmin j2Inw
kXm, j�Xg,ik2

// Assign the exit waypoint

13: end for
14: Pi = /0 8i 2INm // Find priority sets

15: for all i 2INm do
16: for all j 2INm\i do

17: if B(Xg,i)\B(g
(Xm,fg

j
,Xg, j)

) 6= /0 then
18: Pi j
19: end if
20: end for
21: end for
22: (m) = Construct CHOP(ts,Rm,Xs,Xm,Xg,f s,f g,P,vmax)

4.2.1 Define Intermediate Waypoints

First, we find a set of nw intermediate waypoints, Xm, distributed evenly about a

circle with center xc and radius rc. These waypoints must satisfy safety conditions:

1. The distance between all points in the set Xw, defined in Line 8, is at least 2

p
2R.

2. The distance of every goal in Xg from every waypoint in Xm is at least 2

p
2R.

3. The distance of every goal in Xg from every path between a pair of consecutive

intermediate waypoints in Xm is at least 2R.

We designate nw as twice the number of robots in Rm and xc as the mean of the

robots’ start positions. rc, the minimum radius that satisfies the safety criteria, can

be found analytically. Note that robots’ goals can be inside or outside the CHOP.

6 Sarah Tang and Vijay Kumar

4.2.2 Define Entry Waypoints

To enter a CHOP, robots move synchronously from their CHOP start positions to

an intermediate waypoint designated as their entry waypoint. Line 8 chooses every

other waypoint from Xm to form the set of candidate entry waypoints, Xw. In Line 9,

these waypoints are assigned to robots with the optimal assignment returned by the

CAPT algorithm when considering Xs as start positions and Xw as goals.

4.2.3 Define Exit Conditions

Next, robots synchronously and sequentially visit intermediate waypoints in clock-

wise order until they satisfy their Exit Condition (EC). First, Lines 11-13 assigns the

intermediate waypoint closest to each robot’s goal as its exit waypoint. Robots can

only exit the CHOP from this waypoint. Second, Lines 14-21 construct each robot’s

priority set, Pi. A robot can exit via its exit waypoint only if all robots in Pi have

exited. Line 17 ensures that if robot i remaining stationary at its goal will result in a

collision with robot j moving towards its goal, robot i cannot exit before robot j.

4.2.4 Construct CHOP

To execute a CHOP, each robot follows optimal trajectories to sequentially visit its

CHOP start position, its entry waypoint, a series of intermediate waypoints, and its

exit waypoint at the appropriate times. Upon satisfying its EC, it returns to pursuing

an OMP starting from its exit waypoint. Thus, we can fully represent the motion of

all robots in a CHOP with m= {{Xi | i2Rm},T,Tgoal}. Xi is the series of waypoints

robot i visits, starting from its CHOP start position and ending with its exit waypoint.

Note that the sets Xi can be different lengths. T = {t
1

, t
2

, ...} indicates arrival times at

waypoints, where robot i must be at position Xi, j, if it exists, at time t j. T is common

to all robots, and |T | = maxi2Rm |Xi|, where | · | denotes a set’s cardinality. Finally,

Tgoal = {tgoal,i | i 2Rm} is a series of goal arrival times. Robot i must reach its goal

at time tgoal,i after exiting the CHOP.

We already know Xi for each robot. Line 22 additionally defines the series T and

Tgoal . Section 4.4 will show that to guarantee safety, trajectories between waypoints

in the CHOP and the OMPs of robots that have exited must all be synchronized. To

achieve this while respecting all robots’ velocity constraints, we define t
1

= ts and:

t j = t j�1

+ max

i2Rm j

kxnext,i�Xi, j�1

k
2

vmax
j = 2, ..., jmax (8)

Here, jmax = maxi2Rm |Xi|. Rm j ✓Rm is the subset of indices for which |Xi|� j�1,

xnext,i refers to Xi, j if |Xi|� j and Xg,i if |Xi|= j�1. Then:

tgoal,i =

(
t|Xi|+1

if |Xi|< jmax

t jmax +maxi2Rm jmax

kGi�Xi, jmaxk2
vmax

if |Xi|= jmax
(9)

We further define the CHOP exit time for each robot, denoted t f ,i, as the time it

leaves its exit waypoint, which we will use in later algorithms.

A Complete Algorithm for Generating Safe Trajectories for Multi-Robot Teams 7

4.2.5 Example Problem

s1 s2 s3 s4 g1 g2 g4 g3

(a) Problem definition: robots begin at start positions indicated by circles and must navigate to

assigned goal positions indicated by stars of the same color.

Xm,1

Xm,3

Xm,7 Xm,6

Xm,5

Xm,4

Xm,8

Xm,2

(b) Identify intermediate points (c) Identify entry waypoints (d) Identify exit conditions

(e) Resulting motion (f) (g) (h)

Fig. 1: We design a Circular HOlding Pattern (CHOP) for the problem in Fig. 1a.

Figs. 1b-1d show key steps of Algorithm 1. Figs. 1e-1h illustrate the motion plan.

We illustrate Algorithm 1 using the example problem presented in Fig. 1a. Fig. 1b

illustrates the placement of the intermediate waypoints, pictured as black squares.

Fig. 1c shows the assigned entry waypoint for each start position with a circle of

the same color. Fig. 1d shows each robot’s assigned exit waypoint with a circle of

the same color, with higher priority robots indicated by larger circles. Figs. 1e-1h

illustrate the resulting motion plan. As an example, robot 2’s planned trajectory is:

g
2

(t) =

8
>>><

>>>:

g(s2

,Xm,3)(t) t
0

 t  t
1

g(Xm,3,Xm,2)(t) t
1

< t  t
2

g(Xm,2,Xm,1)(t) t
2

< t  t
3

g(Xm,1,g2

)(t) t
3

< t  texit,2

(10)

4.3 The Motion Planning Algorithm
Now, we combine the previous techniques into a single motion planning algorithm,

referred to as OMP+CHOP, that allows robots to follow their OMPs when possible

and directs them into appropriately designed CHOPs in congested areas. This algo-

rithm is presented in Algorithm 2 and described in detail in Sections 4.3.1-4.3.3.

4.3.1 Compute Motion Plan

M contains the set of all CHOPs in the motion plan, from which the set of tra-

jectories g can be derived. Initially, in Line 2, M is empty and all robots follow

8 Sarah Tang and Vijay Kumar

Algorithm 2 g = OMP CHOP(S,G,R,vmax)

1: M = /0

2: g = Compute Motion Plan (S,G,M)

3: C = Find Imminent Collision(g,R)

4: while C 6= /0 do
5: (ts,Radd ,Xs,Xg,Madd) = Compute CHOP Parameters(g,M ,C ,G)

6: (mnew,xc,rc) = Create CHOP(ts,Radd ,Xs,Xg,R,vmax)

7: M mnew
8: M = Remove CHOPs(Madd)

9: g = Compute Motion Plan (S,G,M)

10: C = Find Imminent Collision(g,R)

11: end while

their OMPs from their start positions. When M contains CHOPs, as in Line 9, each

robot follows its OMP until its earliest CHOP’s start time. It then follows optimal

trajectories to each waypoint designated by the CHOP to its exit waypoint, when it

again pursues an OMP until it encounters another CHOP or its goal. This process is

pictured in Fig. 2. The choice of CHOP parameters, described in Section 4.3.3, will

guarantee that CHOPs in M will always start along its robots’ OMPs.

We will use a subscripted variable, such as mk, to denote a particular CHOP in

M and Rmk ,ts,mk ,t f ,i,mk to denote the indices of its robots, its start time, and the

CHOP exit time of robot i 2Rmk , respectively.

Optimal Motion
Plan (OMP)

Circular HOlding
Pattern (CHOP)

(si, gi)
Imminent Collision (IC)

Exit Condition (EC)
(si’, gi)

Fig. 2: Overview of our algorithm’s motion plan: robots follow their OMP whenever

possible, entering CHOPs to resolve collisions.

4.3.2 Find Imminent Collisions (ICs)

Line 3 finds the first Imminent Collision (IC) amongst robots following trajectories

g . We characterize a collision with its time, tc, the number of robots in collision, Nc,

and the set of indices of the colliding robots, C . For all robots i 2 C , there must be

at least one j 6= i2C for which B(xi(tc))\B(x j(tc)) 6= /0. We will use C to denote

both the collision and the set of robots in the collision.

4.3.3 Create Local CHOP

Line 5 of Algorithm 2 finds the parameters of a new CHOP, denoted mnew, that will

resolve the detected IC. This function is presented in Algorithm 3.

mnew is characterized by the set of indices of the robots it contains, Radd . As

shown in Line 1 of Algorithm 3, Radd initially contains only robots in the IC. Addi-

tionally, existing CHOPs in M might need to be merged with mnew. These CHOPs

are contained in Madd , which is initially empty. Mcurr, also initially empty, contains

only the CHOPs to be merged that were identified in the most recent iteration.

A Complete Algorithm for Generating Safe Trajectories for Multi-Robot Teams 9

Algorithm 3 (ts,Radd ,Xs,Xg,Madd) = Compute CHOP Parameters(g,M ,C ,G)

1: Madd = /0,Radd = C , ts = tc,merge = 1 // Initialize variables

2: Mcurr = {mk 2M | 9 r 2 C \Rmk for which tc 2 [ts,mk ,t f ,r,mk]}
3: while true do
4: // Find valid starting conditions

5: ts = maxtts t such that kxi(t)�x j(t)k2

� 2

p
2R 8 j 6= i 2Radd

6: Xs = {xi(ts) | i 2Radd}, Xg = {gi | i 2Radd}
7: if merge == 0, break end if
8: (mcurr,xc,rc) = Create CHOP(ts,Radd ,Xs,Xg,R,vmax)

9: // Merge robots and CHOPs whose paths intersect mcurr’s circle

10: ta = t
1,mcurr , tb = maxi2Radd t f ,i,mcurr

11: l = Set of paths that all robots r 2IN \Radd traverse between [ta, tb]
12: ROMP = Robots whose OMP’s paths are in l and intersect a circle at xc, radius rc +2R
13: Mcurr CHOPs whose paths are in l and intersect a circle at xc, radius rc +2R
14: // Merge CHOPs that will cause conflicting motion plans for robots in Radd
15: Radd ROMP[{Rm j | m j 2Mcurr}
16: for r 2Radd do
17: tmin,r = min(ts[{ts,m j | m j 2Mcurr and r 2Rm j})
18: end for
19: Mcurr {mk 2M | 9 r 2Rmk \Radd and t f ,r,mk � tmin,r}
20: // Merge CHOPs that contain two or more common robots with Radd
21: Radd {Rm j | m j 2Mcurr}
22: Mcurr {mk 2M | |Radd \Rmk |� 2}
23: // If any additional robots or CHOPs were identified to be merged, iterate again

24: if ROMP 6= /0 or Mcurr \Madd 6= /0 then
25: Madd Mcurr , Radd {Rm j | m j 2Mcurr}, ts = min(ts[{ts,m j | m j 2Mcurr})
26: merge = 1,Mcurr = /0

27: else
28: merge = 0

29: end if
30: end while

Algorithm 3 then grows Radd and Madd until a valid CHOP can be constructed.

Line 2 indicates that if any robots in C are executing a CHOP when the IC occurs,

their CHOPs must be merged with mnew. Lines 5-6 defines the CHOP start time

and start positions for the current Radd , ensuring that the start positions are always

on robots’ OMPs. Line 8 creates mcurr, the CHOP defined by the current Radd .

Additional robots and CHOPs are added based on three merging conditions:

1. Add robots and CHOPs whose paths intersect mcurr’s circle (Lines 10-13), so

when moving between intermediate waypoints, robots in mcurr will be collision-

free, even with robots not in the CHOP. Note we only consider robots’ paths,

which simplifies this condition to fast line segment-circle intersection tests.

2. Merge CHOPs that will cause conflicting motion plans for robots in Radd
(Lines 15-19), so M will always translate to a valid motion plan.

3. Merge CHOPs that contain two or more common robots with Radd (Lines 21-

22). This ensures that no two robots will be in the same CHOP more than once,

which will help provide algorithm completeness in Section 4.5.

Line 21 adds any new robots to Radd and Line 25 merges any new CHOPs. To

merge the CHOPs in Madd , their constituent robots are added to Radd . If any merged

10 Sarah Tang and Vijay Kumar

CHOPs occur before mcurr, mcurr’s start time is shifted to the earliest start time. We

then reconstruct mcurr with the updated Radd and iterate again as necessary.

With the returned parameters, we use Algorithm 1 to create the new CHOP, mnew,

which is added to M . The merged CHOPs in Madd are removed. A new motion plan

is computed and the next IC is resolved until the motion plan is collision-free.

4.3.4 Example Problem

Fig. 3 illustrates Algorithms 2 and 3 on the example problem in Fig. 3a.

s3 s2 s1

s4 s5

g2 g3 g5

g1

g4

(a) Problem definition. (b) Iteration 0: M = /0

m1

(c) Iteration 1: M = {m
1

}

m1

m2

(d) Iteration 2: M = {m
1

,m
2

}

m1

m2

mcurr

(e) Iteration 3: mcurr created, and

additional merging is needed.

m3

(f) Iteration 3: M = {m
3

}

Fig. 3: Illustration of Algorithm 2 on the example problem in Fig. 3a. Robots start

at circles and must navigate to stars of the same color.

Fig. 3b shows the initial motion plan, where M = /0 and all robots follow their

OMPs from their start positions. Figs. 3c-3d shows the motion plans after the first

two ICs are resolved. Next, an IC between robots 1 and 3 is detected.

mcurr in Fig. 3e represents the initial CHOP created in Line 1 of Algorithm 3,

where Radd = C = {1,3}. In Lines 12-13, robot 5’s OMP’s path and robot 2’s path

in m
1

are found to intersect mcurr’s circle. Thus, ROMP = {5},Mcurr = {m
1

}. At

Line 15, Radd = {1,2,3,5}. Evaluating Line 19, m
2

contains robot 5, which is in

Radd , and t f ,m
2

,5 > tmin,5 = ts,mcurr . Thus, m
2

is added to Mcurr. Lines 21-22 will

not change Radd or Mcurr. Finally, from Line 25, ts = tm
1

,Radd = {1,2,3,4,5},

and Madd = {m
1

,m
2

}. No further additions to Radd or Madd are needed.

We create mnew = m
3

and add it to M , and m
1

and m
2

are removed from M . No

other ICs exist. Fig. 3f illustrates the resulting motion plan.

Note Algorithm 2 can be modified to accommodate vehicles with a lower ve-

locity bound, vmin, instead of vmax. With an additional constraint that a CHOP’s

intermediate waypoints must be at least 2

p
2R away from its start positions, the

minimum length of any synchronized trajectory is dmin = 2

p
2R. The maximum

length is dmax =
p

2rc,max, where rc,max is the radius of a CHOP involving all N
robots and contains all goals in G. Thus, running Algorithm 2 with vmax = vmin

dmax
dmin

will ensure that robots will not travel slower than vmin.

A Complete Algorithm for Generating Safe Trajectories for Multi-Robot Teams 11

4.4 Safety
Theorem 1. Robots are collision-free when executing a CHOP from Algorithm 1.

Proof. Consider a CHOP m = {{Xi | i 2 Rm},T,Tgoal} with final goals Xg. Let

Xk
s = {Xi,k�1

| i 2Rmk} denote the positions of robots in Rmk at tk�1

and Xk
g denote

the set {xnext,i | i 2 Rmk}. Here, Rmk and xnext,i are defined as in Eq. 8. We show

that robots’ trajectories are collision-free for all k = 2, ...,maxi2Rm |Xi|+1.

We use the CAPT algorithm to assign entry waypoints, so for k = 2, when robots

move from their CHOP start positions to their entry waypoints, the assignment of

goals Xk
g to robots at Xk

s minimizes the total distance squared.

In subsequent intervals, Xk
s contains only intermediate waypoints while Xk

g can

contain both intermediate waypoints and goals. Suppose robot i 2 Rmk is moving

between intermediate waypoints. Robots enter at every other intermediate waypoint

and subsequent rotations are synchronized, so Xi, j 6= Xj,k�1

8 j 6= i 2Rmk . Thus:

kXi,k�Xi,k�1

k2

2

 kXi,k�Xj,k�1

k2

2

8 j 6= i 2Rmk (11)

Now, suppose robot i is moving from its exit waypoint to its goal. By design, the

exit waypoint is the closest intermediate waypoint to the goal. Thus:

kXg,i�Xi,k�1

k2

2

 kXg,i�Xj,k�1

k2

2

8 j 6= i 2Rmk (12)

As a result, no alternate assignment of points in Xk
s to those in Xk

g will result in paths

with a lower total distance squared than the CHOP’s specified assignment. Thus, in

each time interval, robots move from their positions in Xk
s to the the one in Xg

k that

coincides with the minimum total distance squared assignment.

Line 5 of Algorithm 3 and safety conditions 1 and 2 of Algorithm 1 guarantee

positions in Xk
s and Xk

g for all k meet the separation conditions in Eq. 2. The CAPT

algorithm guarantees all synchronized trajectories between waypoints are collision-

free [14]. Finally, safety condition 3 and the priority sets in Algorithm 1 ensure

robots stationary at their goals will not collide with moving robots.

By assigning inter-waypoint motions that match the optimal unlabeled allocation,

we inherit the collision avoidance guarantees of the CAPT algorithm. In essence, we

use a series of solutions to the unlabeled problem to move towards labeled goals.

4.5 Completeness
Theorem 2. Algorithm 2 is complete.

Proof. To be complete, an algorithm must always find a collision-free motion plan

in finite time if one exists and indicate that there is no solution when one does not.

From Thm. 1, a CHOP containing all N robots will always be a valid solution.

We must additionally show that Algorithm 2 returns a solution in finite iterations.

First note that Algorithm 3 always returns in finite iterations, as there are finite

numbers of robots and CHOPs that can be added to Radd and Madd , and elements

12 Sarah Tang and Vijay Kumar

are never removed. Define A as the set of interactions in M . An interaction is a

pair of indices of robots, {i, j}, such that i, j 2Rm for some m 2M . For example,

in Fig. 3d, A = {{1,2},{4,5}}. When all robots are in a single CHOP, A = [IN]2.

In each iteration of Algorithm 2, either the algorithm terminates, or a new CHOP

is added to M . In the latter case, the set of interactions in A is strictly growing.

To see this, first note that at each iteration, all removed CHOPs have been merged

into mnew, so interactions are never removed. Alternatively, A can remain un-

changed. This can only occur if Madd contains a single CHOP, m
1

, identical to mnew.

Suppose mnew resolves the IC, C . Then, C ✓ Rmnew = Rm
1

. m
1

resolves the first

IC between robots in C and guarantees they reach their goals collision-free. Thus,

robots in C can only collide if they abandon their OMPs to enter other CHOPs.

Let Ma f ter be the set of CHOPs that robots in C enter after exiting m
1

. CHOPs in

Ma f ter fulfill merging condition 2, so Ma f ter ⇢Madd , and Madd 6= {m
1

}. We have

a contradiction, so A must contain at least one new interaction.

Merging condition 3 guarantees that robots will interact at most once. In finite

iterations, A will contain all unique interactions. This represents the case where all

robots are in a single CHOP, which is a collision-free motion plan.

5 Simulation Results

Finally, we examine the algorithm’s performance in simulations. Experiments were

done on a 2.5 GHz Macbook Pro in MATLAB and C++ Mex, with a maximum

algorithm runtime of 10 minutes.

We define a solution’s sub-optimality ratio using the total distance of its paths:

rd =
ÂN

i=0

R t f ,i
0

˙gi(t)dt
ÂN

i=0

ksi�gik2

(13)

The denominator is an underestimate of the optimal total distance, as for problems

like Fig. 1a, the straight-line paths to goals have no collision-free velocity profile.

To detect ICs, we sample trajectories at dt = R
vmax

, where R = 1,vmax = 5, to

ensure no collisions occur between samples. We check for collisions using a spa-

tial hashing algorithm [8] and further eliminate checks for robots moving between

intermediate waypoints and between pairs of robots executing the same CHOP.

5.1 Variations in Team Size
To examine the effect of the team’s size on computation time, we randomly generate

case students for 500 robots. We then subsample 400 start to goal assignments from

the original set, 300 assignments from the remaining set of 400, and so on.

Figs. 4a plots the algorithm computation time for various team sizes. All motion

plans for N  100 were found in less than 4 minutes. Fig. 7 plots the suboptimality

ratios of the solutions, rd , which is below 7 for all solved problems. Figs. 4b-4d

shows the paths of the final motion plan for three example problems.

A Complete Algorithm for Generating Safe Trajectories for Multi-Robot Teams 13

(a) Computation time in average-case settings over 50 trials for each N.

-10 0 10 20
-15

-10

-5

0

5

10

15

20

(b) 5 robots with 1 CHOP

-5 0 5 10 15

-2

0

2

4

6

8

10

12

(c) 7 robots with 2 CHOPs

-60 -40 -20 0 20 40 60
-50

-40

-30

-20

-10

0

10

20

30

40

(d) 15 robots with 5 CHOPs

Fig. 4: Fig. 4a displays our algorithm’s performance over 50 randomly generated

case studies. Figs. 4b-4d illustrates the final motion plans for example problems.

5.2 Variations in Problem Density
Next, for a given team size N, we deterministically generate a set of start positions

from Halton sequences. These positions are sorted by y-coordinate and stored in

Sinit . For each experiment, we choose a constant Dk and construct the sets S=DkSinit
and G = S+[2R 0]T . Robot i 2IN is assigned start position si = Si and goal gi =

G
fDk

i
. f Dk

i = i for i
l

Dk
Dk,max

N
m

, and f Dk
i for other robots are a random permutation

of each other’s indices. We designate Dk,max = 50. When Dk = Dk,max, f Dk
i = i for

all robots, representing the best-case scenario: robots are sparsely located and their

OMPs, a simple translation rightwards, are safe. As Dk decreases, the available free

space decreases and the number of collisions increases.

Fig. 5 shows the computation time and Fig. 7 shows the corresponding rd values

over 25 trials for each combination of N and Dk. For small Dk, robots are tightly

packed and a single large CHOP will likely be created in a few iterations. Solu-

tions are found quickly, but rd values are high. As Dk increases, the available free

space allows for formation of more local CHOPs, causing smaller deviations from

robots’ OMPs. This decreases rd , but increases the computation time. This increase

in computation time is more dramatic for larger values of N.

For large Dk, collisions become sparse and fewer CHOPs need to be constructed,

decreasing both the computation time and rd . When Dk = Dmax, no CHOPs need to

be created, so the computation time required is small. In short, our algorithm finds

solutions quickly for both extremely sparse and dense settings, but requires more

computation time when planning many local CHOPs for large teams.

14 Sarah Tang and Vijay Kumar

1 10 25 40 49 50

co
m

pu
ta

tio
n

tim
e

(s
)

0

100

200

300

400

500

600

Dk

5 robots 10 robots 25 robots 50 robots 100 robots 200 robots 300 robots 400 robots 500 robots

0

50

100

150

Detail for Dk = 1
0

1

2

3

4

5

6

7

Detail for Dk = 50

Fig. 5: Computation time over 25 trials for each combination of N and Dk.

5.3 Worst-Case Distributions
We also evaluate the algorithm’s performance in the worst-case scenario. For a given

N, we find the densest packing of N equally-sized circles in a square that satisfies the

separation conditions [12]. We use these circles’ centers as both the start and goal

positions and generate 50 random assignments for each N. These problems pose the

additional challenge that each robot’s goal is the start position of another robot.

Fig. 6: Computation time in worst-case settings over 50 trials for each N.

Fig. 6 shows we can efficiently solve these problems for N  504 in less than

3.5 minutes. Again, once the first collision is found, it is probable that a CHOP

containing all N robots will be formed in a only a few iterations. As shown in Fig. 7,

rd becomes rather high for large teams. Nonetheless, we are able to find safe motion

plans for teams of hundreds of robots in a challenging environment.

Dk

 1 10 25 40 49 50
0

20

40

number of robots N, average-case setting
 2 5 10 20 30 40 50 60 70 80 90 100 200 300 400 500

di
st

an
ce

 s
ub

op
tim

al
ity

 r d

2
4
6

number of robots N, worst-case setting
 2 5 10 20 30 40 50 60 70 80 90 100 200 300 400 504

0
200
400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1
Fig. 7: Suboptimality over all experiments.

A Complete Algorithm for Generating Safe Trajectories for Multi-Robot Teams 15

5.4 Comparison with Other Multi-Robot Planning Algorithms
Finally, we discuss the performance of our algorithm in comparison with M* with

heuristic function inflated by e [18] and Optimal Reciprocal Collision Avoidance

(ORCA) [16]. Table 1 reports the algorithms’ performances for a problem generated

in Section 5.2 with N = 10, Dk = 1, 5, and 10.

The M* algorithm builds on A* as an underlying algorithm, searching for optimal

paths to goals for each robot in its individual configuration space when robots are

collision-free and in a higher-dimensional joint configuration space when they col-

lide. M* retains the completeness and optimality guarantees of A*. In the best-case

scenario, M* is extremely fast, as its search space remains low-dimensional. How-

ever, its computation time scales up quickly as robots become more densely packed,

as the size of the search space grows exponentially with each additional robot in

collision. The computation time of our OMP+CHOP algorithm does not scale up as

quickly. We note that variants of M* can improve performance, but no results for

M*-based algorithms have been reported for problems where N > 200 [18].

ORCA is a decentralized, real-time algorithm that, at each time step, assigns each

robot a safe velocity based on the observed velocities of its neighbors. The assigned

velocity is guaranteed to be collision-free for a known time horizon. We report the

total time of the motion plan as the algorithm’s planning time, but note that these are

different measures. Compared to OMP+CHOP, ORCA’s solutions are more optimal.

However, in highly dense scenarios, it is possible that a guaranteed safe velocity

cannot be found and robots are forced to choose a “best possible” velocity instead.

While ORCA has been shown to perform well for large teams in dense settings in

practice [16], there are no safety or completeness guarantees.

Table 1: Comparison of performances of multi-robot planning algorithms.

OMP+CHOP M* (e = 1.5) ORCA [15]

Best case Planning Time (s) 2.78 0.0020 6.00

Dk = 10 Suboptimality Ratio 1.00 1.00 1.00

Average case Planning Time (s) 2.59 0.027 70.25

Dk = 5 Suboptimality Ratio 1.07 1.001 1.001

Worst case Planning Time (s) 2.65 16.09 23.00

Dk = 1 Suboptimality Ratio 5.35 1.11 1.07

6 Conclusions and Future Work
We present the OMP+CHOP algorithm to solve the labeled multi-robot planning

problem. This algorithm is scalable while still maintaining safety and complete-

ness guarantees. CHOPs are designed analytically, and no high-dimensional graph

searches are required to resolve imminent collisions between robots. This becomes

particularly beneficial in densely packed regions or when many robots converge at

a single collision point, where other motion planning algorithms reach bottlenecks.

However, we trade off optimality for safety and scalability. In particular, in

densely packed problems, the motion plan can be very suboptimal and some robots

might circle the CHOP many times before exiting. Immediate directions for future

research are applying the algorithm to robots with higher order dynamics and devel-

oping a decentralized algorithm requiring only local communication. Future work

will also work towards analytically characterizing the algorithm’s suboptimality.

16 Sarah Tang and Vijay Kumar

Acknowledgements We gratefully acknowledge the support of ONR grants N00014-09-1-1051

and N00014-09-1-103, NSF grant IIS-1426840, and Exyn Technologies. Sarah Tang is supported

by NSF Research Fellowship Grant No. DGE-1321851. The authors would also like to thank Levi

Cai from the University of Pennsylvania for his implementation of the M* algorithm.

References

1. Buckley S., “Fast motion planning for multiple moving robots,” in Proceedings of the 1989
IEEE International Conference on Robotics and Automation (ICRA), 1989, pp. 322–326.

2. de Wilde B., ter Mors A. W., and Witteveen C., “Push and rotate: Cooperative multi-agent

path planning,” in Proceedings of the 2013 International Conference on Autonomous Agents
and Multi-agent Systems (AAMAS), 2013, pp. 87–94.

3. Erdmann M. and Lozano-Perez T., “On multiple moving objects,” Algorithmica, vol. 2, pp.

1419–1424, 1986.

4. FAA , “Overview of small uas notice of proposed rulemaking,” February 2015.

5. Forbes , “Meet amazon prime air, a delivery-by-aerial-drone project,” December 2013.

6. Goldenberg M., Felner A., Stern R., Sharon G., Sturtevant N., Holte R. C., and Schaeffer J.,

“Enhanced partial expansion A*,” Journal of Artificial Intelligence Research, vol. 50, no. 1,

pp. 141–187, 2014.

7. Hart P. E., Nilsson N. J., and Raphael B., “A formal basis for the heuristic determination of

minimum cost paths,” IEEE Transactions on Systems Science and Cybernetics, vol. 4, no. 2,

pp. 100–107, July 1968.

8. Hastings E. J., Mesit J., and Guha R. K., “Optimization of large-scale, real-time simulations

by spatial hashing,” in Proceedings of the 2005 Summer Computer Simulation Conference,

2005, pp. 9–17.

9. Kant K. and Zucker S. W., “Toward efficient trajectory planning: The path-velocity decom-

position,” The International Journal of Robotics Research (IJRR), vol. 5, no. 3, pp. 72–89,

1986.

10. Kuhn H., “The hungarian method for the assignment problem,” Naval Research Logistics
Quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

11. Peng J. and Akella S., “Coordinating multiple robots with kinodynamic constraints along

specified paths,” The International Journal of Robotics Research (IJRR), vol. 24, no. 4, pp.

295–310, 2005.

12. Specht E., “The best known packings of equal circles in a square,” October 2013. [Online].

Available: http://hydra.nat.uni-magdeburg.de/packing/csq/csq.html

13. Tomlin C., Pappas G. J., and Sastry S., “Conflict resolution for air traffic management: a study

in multi-agent hybrid systems,” IEEE Transactions on Automatic Control, vol. 43, pp. 509–

521, 1998.

14. Turpin M., Michael N., and Kumar V., “CAPT: Concurrent assignment and planning of tra-

jectories for multiple robots,” The International Journal of Robotics Research, vol. 33, no. 1,

pp. 98–112, 2014.

15. van den Berg J., “RVO2 library documentation,” 2008. [Online]. Available: http:

//gamma.cs.unc.edu/RVO2/documentation/2.0/index.html

16. van den Berg J., Guy S. J., Lin M. C., and Manocha D., “Reciprocal n-body collision avoid-

ance,” in The 14th International Symposium on Robotics Research (ISRR), 2009, pp. 3–19.

17. van den Berg J., Snoeyink J., Lin M., and Manocha D., “Centralized path planning for multiple

robots: Optimal decoupling into sequential plans,” in Proceedings of Robotics: Science and
Systems (RSS), 2009.

18. Wagner G. and Choset H., “Subdimensional expansion for multirobot path planning,” Artificial
Intelligence, vol. 219, pp. 1–24, 2015.

19. Yu J. and LaValle S. M., “Planning optimal paths for multiple robots on graphs,” in Proceed-
ings of 2014 IEEE International Conference on Robotics and Automation (ICRA), 2013, pp.

3612–3617.

